Side-Channel Resistant Scalar Multiplication Algorithms over Finite Fields

Alexandre VENELLI ${ }^{1,2}$

François DASSANCE ${ }^{1}$

1 - ATMEL
Secure Microcontroller Solutions
Rousset, FRANCE

Institut de
Mathématiques
de Luminy

2-IML - ERISCS
Université de la Méditerranée
Marseille, FRANCE

Side-Channel Resistant Scalar Multiplication

 Algorithms over Finite Fields
Outline

■ Elliptic Curve Cryptosystems (ECC)

■ Side-channel attacks against ECC

■ Classical side-channel resistant scalar multiplication algorithms

■ Our proposed alternatives

Side-Channel Resistant Scalar Multiplication

 Algorithms over Finite Fields
Background on ECC (1)

■ Public Key (Asymmetric) cryptosystem
\square Based on a hard problem :

- Elliptic Curve Discrete Logarithm Problem (ECDLP)
- Given an elliptic curve, points P and Q, find k such that $Q=k P$
- Hardness of ECDLP = Security level of ECC protocols
- No sub-exponential algorithms known for ECDLP

Background on ECC (2)

- At the base of ECC operations is finite field algebra with either :
- Prime finite fields (GF(p)) or
- Binary extension finite fields (GF(2m))

■ ECC depends on :

- Finite field selection,
- Elliptic curve type,
- Point representation,
- Protocol,
- Hardware/software breakdown,
- Memory available,

Side-Channel Resistant Scalar Multiplication

 Algorithms over Finite Fields
Elliptic Curve

Short Weierstrass curves

- Curves used in norms: FIPS, ANSI, ...

■ Elliptic curve on binary field :

$$
E: y^{2}+x y=x^{3}+a x^{2}+b \quad\left(a, b \in G F\left(2^{n}\right), b \neq 0\right)
$$

■ Elliptic curve on prime field :
$E: y^{2}=x^{3}+a x+b \quad\left(a, b \in G F(p), 4 a^{3}+27 b^{2} \neq 0, p>3\right)$

All points satisfying E and infinity point O

Abelian group with addition law

Generic Addition on EC

■ Let $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right), P_{3}=\left(x_{3}, y_{3}\right) \in E$
■ EC Doubling (ECDBL): $\quad P_{3}=P_{1}+P_{1}=2 P_{1}$
\square EC Addition (ECADD): $\quad P_{3}=P_{1}+P_{2} \quad\left(P_{1} \neq P_{2}\right)$
■ On GF(p), Jacobian coordinates :

- ECDBL = 4M + 5S
- ECADD = 14M + 5S
$■$ On GF(2^{m}), López-Dahab coordinates :
- ECDBL $=3 \mathrm{M}+5 \mathrm{~S}$
- $E C A D D=13 M+4 S$

Side-Channel Resistant Scalar Multiplication

 Algorithms over Finite Fields
ECC Operations Hierarchy

'Simpliffed' Addition on EC

- Let $P_{1}=\left(X_{1}, Y_{1}, Z\right), P_{2}=\left(X_{2}, Y_{2}, Z\right) \in E$

SimpleAdd $\left(P_{1}, P_{2}\right) \rightarrow\left(\widetilde{P}_{1}, P_{1}+P_{2}\right)$ with $Z_{\tilde{P}_{1}}=Z_{P_{1}+P_{2}}$
$■$ On GF(p), Jacobian coordinates :

- 5M + 2S (Meloni 2007)

■ On GF($\left.\mathbf{2}^{\mathrm{m}}\right)$, Jacobian coordinates :

- 7M + 2S (this work)

■ Formulae not interesting with a standard scalar multiplication algorithm \rightarrow our propositions

Scalar Multiplication on EC

$■$ Scalar Multiplication $k P$

- Double-and-add $\quad P \in E, \quad k=\left(k_{n-1} \cdots k_{0}\right)_{2}, k_{n-1}=1$

1. $Q \leftarrow P$
binary representation
2. From $i=n-2$ downto 0

$$
Q \leftarrow 2 Q
$$

ECDBL

$$
\text { if } k_{i}=1 \text { then } Q \leftarrow Q+P \quad \text { ECADD }
$$

3. Return Q

- Ex: $51 P=(110011)_{2} P$
$P \underset{\mathrm{D}}{\mathrm{C}} 2 P \underset{\mathrm{~A}}{\longrightarrow} 3 P \underset{\mathrm{D}}{ } 6 P \underset{\mathrm{D}}{\longrightarrow} 12 P \underset{\mathrm{D}}{ } 24 P \underset{\mathrm{~A}}{\vec{~}} 25 P$

Side-Channel Resistant Scalar Multiplication

 Algorithms over Finite Fields
Implementation Attacks

1 Institut de

- HECS

A血酉

Families of Side-Channel Attacks

■ Simple Power Analysis (SPA)
Observe the power consumption of devices in a single computation and detect the secret key

■ Differential Power Analysis (DPA)
Observe many power consumptions and analyze these information together with statistic tools

■ Fault Analysis (FA) Using the knowledge of correct results, faulted results and the precise place of induced faults an adversary is able to compute the secret key

Side-Channel Resistant Scalar Multiplication

 Algorithms over Finite Fields
Brief History of SCA

■1996:

- Kocher et al. \rightarrow Timing attacks
- Boneh et al. \rightarrow Fault injection

■ 1998 :

- Kocher et al. \rightarrow Power analysis
- 2000 :
- Quisquater et al. \rightarrow Electromagnetic analysis

Side-Channel Resistant Scalar Multiplication

 Algorithms over Finite FieldsPower Analysis : Cheap and Easy

Side-Channel Resistant Scalar Multiplication

 Algorithms over Finite Fields
SPA against ECC (Coron 1999)

Algorithm 1: Left-to-right dou		
$\begin{aligned} & \text { input }: P \in E \text { and } k=\left(k_{n}\right. \\ & \text { output: }[k] P \in E \end{aligned}$		
$1{ }^{1} \mathrm{Q} \leftarrow P$		
2 for $i \leftarrow n-2$ to 0 do		
	$Q \leftarrow[2] P$	EC
	if $k_{i}=1$ then	
	$\lfloor Q \leftarrow Q+P$	ECADD
6 return Q		

- ECDBL

Mh

- ECADD
Mhwh

$$
\mathrm{Ex}: 51 P=(110011)_{2} P
$$

Secret revealed!

If Institut de de Luminy

AIIIEI

Side-Channel Resistant Scalar Multiplication Algorithms over Finite Fields

Double-and-add-always (Coron 1999)

Algorithm 2: Double-and-always-add input : $P \in E$ and $k=\left(k_{n-1} \ldots k_{1} k_{0}\right)_{2}$ output: $[k] P \in E$
${ }_{1} Q_{0} \leftarrow P$
2 for $i \leftarrow n-2$ to 0 do

3	$Q_{0} \leftarrow 2 \mid Q_{0}$	ECDBL
${ }_{5}$	$Q_{1} \leftarrow Q_{0}+P$	ECADD
$Q_{0} \leftarrow Q_{k_{i}}$		

6 return Q_{0}

Ex:
$51 P=(110011)_{2} P$

In Institut de

Side-Channel Resistant Scalar Multiplication

 Algorithms over Finite Fields
SPA Resistant but not FA Resistant

$=51 P$
$=51 P$

Side-Channel Resistant Scalar Multiplication Algorithms over Finite Fields

Montgomery Ladder (Brier, Joye 2002)

Algorithm 3: Montgomery ladder
input : $P \in E$ and $k=\left(k_{n-1} \ldots k_{1} k_{0}\right)_{2}$
output: $[k] P \in E$
$1 P_{0} \leftarrow P$
${ }_{2} P_{1} \leftarrow[2] P$
3 for $i \leftarrow n-2$ to 0 do
// $k_{i}=$ either 0 or 1 and $\bar{k}_{i}=1-k_{i}$
$4 \quad P_{k_{i}} \leftarrow P_{0}+P_{1}$
$5 \quad P_{k_{i}} \leftarrow[2] P_{k_{i}}$
6 return P_{0}

1 Institut de

Side-Channel Resistant Scalar Multiplication

 Algorithms over Finite Fields
Montgomery Ladder, it works !

$\square E x: 51 P=(110011)_{2} P$		Algorithm 3: Montgomery ladder
		$\begin{aligned} & \text { input }: P \in E \text { and } k=\left(k_{n-1} \ldots k_{1} k_{0}\right)_{2} \\ & \text { output: }[k] P \in E \end{aligned}$
$\mathrm{P}_{0}=P$	$\mathrm{P}_{0}=\mathrm{P}_{0}+\mathrm{P}_{1}=3 \mathrm{P}$	${ }_{1} P_{0} \leftarrow P$
$\mathrm{P}_{1}=2 \mathrm{P}$	$\mathrm{P}_{1}=2 \mathrm{P}_{1}=4 \mathrm{P}$	${ }_{2} P_{1} \leftarrow[2] P$
		3 for $i \leftarrow n-2$ to 0 do
$\mathrm{k}_{3}=0$	$\mathrm{k}_{2}=0$	$\begin{array}{l\|l} 4 & \begin{array}{l} / / k_{i}=\text { either } 0 \text { or } 1 \text { and } \\ P_{k_{i}} \leftarrow P_{0}+P_{1} \end{array} \end{array}$
$\mathrm{P}_{1}=\mathrm{P}_{0}+\mathrm{P}_{1}=7 \mathrm{P}$	$\mathrm{P}_{1}=\mathrm{P}_{0}+\mathrm{P}_{1}=13 \mathrm{P}$	$5\left[P_{k_{i}} \leftarrow[2] P_{k_{i}}\right.$
$\mathrm{P}_{0}=2 \mathrm{P}_{0}=6 \mathrm{P}$	$\mathrm{P}_{0}=2 \mathrm{P}_{0}=12 \mathrm{P}$	6 return P_{0}
$\mathrm{k}_{1}=1$	$\mathrm{k}_{0}=1$	
$\mathrm{P}_{0}=\mathrm{P}_{0}+\mathrm{P}_{1}=25 \mathrm{P}$	$\mathrm{P}_{0}=\mathrm{P}_{0}+\mathrm{P}_{1}=51 \mathrm{P}$	
$\mathrm{P}_{1}=2 \mathrm{P}_{1}=26 \mathrm{P}$	$\mathrm{P}_{1}=2 \mathrm{P}_{1}=52 \mathrm{P}$	0 毞
	.ssi 2010, may 18.21	A $\square_{\text {W }}$

Our Proposition

■ Montgomery ladder idea + ‘simplified' addition = side-channel resistant + efficient algorithm

- Problem :
- Montgomery ladder needs a EC doubling each round
- In the next round, we need for the 'simplified' addition points with the same Z-coordinate
- We would need to transform the output of the doubling so that it has the correct Z -coordinate
- Extremely inefficient
\square We need to get rid of EC doubling in the algorithm \rightarrow only use fast 'simplified' additions

Side-Channel Resistant Scalar Multiplication Algorithms over Finite Fields

Modified Montgomery Ladder

Algorithm 4: Montgomery ladder with additions input $: P \in E$ and $k=\left(k_{n-1} \ldots k_{1} k_{0}\right)_{2}$ output: $[k] P \in E$
$1 P_{1} \leftarrow P$;
${ }_{2} P_{2} \leftarrow[2] P$;
3 for $i \leftarrow n-2$ to 0 do
$4 \quad P_{1} \leftarrow P_{1}+P_{2}$;
$5 \quad P_{2} \leftarrow P_{1}+(-1)^{\bar{k}_{i}} P$;
6 return P_{1} ETECS

Side-Channel Resistant Scalar Multiplication Algorithms over Finite Fields

Modified Montgomery Ladder, still works !

$\square E x: 51 P=(110011)_{2} P$
$\mathbf{k}_{5}=\mathbf{1}$

$\mathrm{P}_{1}=\mathrm{P}$
$\mathrm{P}_{2}=2 \mathrm{P}$
:---:
$\mathrm{P}_{1}=\mathrm{P}_{1}+\mathrm{P}_{2}=3 \mathrm{P}$
$\mathrm{P}_{2}=\mathrm{P}_{1}+\mathrm{P}=4 \mathrm{P}$

Algorithm 4: Montgomery ladder with additions input $: P \in E$ and $k=\left(k_{n-1} \ldots k_{1} k_{0}\right)_{2}$ output: $[k] P \in E$
${ }_{1} P_{1} \leftarrow P$;
${ }_{2} P_{2} \leftarrow[2] P$;
3 for $i \leftarrow n-2$ to 0 do
$\mathbf{4}$
$\mathbf{5}$$\quad \begin{aligned} & P_{1} \leftarrow P_{1}+P_{2} ; \\ & P_{2} \leftarrow P_{1}+(-1)^{\bar{k}_{i}} P ;\end{aligned}$
6 return P_{1}
$P_{1}=P_{1}+P_{2}=7 P$

$P_{2}=P_{1}-P=6 P$$\quad$| $P_{1}=P_{1}+P_{2}=13 P$ |
| :---: |
| $P_{2}=P_{1}-P=12 P$ |

$k_{0}=1$
$P_{1}=P_{1}+P_{2}=25 P$
$P_{2}=P_{1}+P=26 P$

$k_{0}=1$	
$P_{1}=P_{1}+P_{2}$	$=51 P$
$P_{2}=P_{1}+P=52 P$	

Tweak ‘Simplified’ Addition

\square Problem : we need the point P with the correct Z coordinate at each round
\square Computing both addition and subtraction in a modified 'simplified' addition

$$
\text { SimpledAddSub } \rightarrow\left(\tilde{P}_{1}, P_{1}+P_{2}, P_{1}-P_{2}\right)
$$

Complexity in field operations

	GF(p)	GF(2
m $)$		
SimpleAdd	$5 \mathrm{M}+2 \mathrm{~S}$	$7 \mathrm{M}+2 \mathrm{~S}$
SimpleAddSub	$6 \mathrm{M}+3 \mathrm{~S}$	$11 \mathrm{M}+2 \mathrm{~S}$

Proposed Algorithm

Algorithm 5: BasicScalarMult
input : $P \in E$ and $k=\left(k_{n-1} \ldots k_{1} k_{0}\right)_{2}$
output: $[k] P \in E$

$$
\begin{aligned}
& 1 P_{1} \leftarrow[2] P \\
& 2 P_{2} \leftarrow P \\
& \quad / / \text { We assume } Z_{P_{1}}=Z_{P_{2}}
\end{aligned}
$$

$$
3 \text { for } i \leftarrow n-2 \text { to } 0 \text { do }
$$

$$
4 \mid \quad Q \leftarrow \operatorname{SimpleAddSub}\left(P_{1}, P_{2}\right)
$$

$$
\begin{array}{l|lr}
\mathbf{5} \\
\mathbf{6} & P_{1} \leftarrow Q[1] & / * P_{1} \leftarrow\left(P_{1}+P_{2}\right) * / \\
\mathbf{7} & P_{2} \leftarrow Q[2] & / * P_{2} \leftarrow\left(P_{1}-P_{2}\right)=P * / \\
\mathbf{7} \leftarrow \operatorname{SimpleAddSub}\left(P_{1}, P_{2}\right) & \\
\mathbf{8} & P_{1} \leftarrow Q\left[k_{i}\right] & / * P_{1} \leftarrow \tilde{P}_{1} \text { or } P_{1} \leftarrow P_{1}+P_{2} * / \\
P_{2} \leftarrow Q\left[2 \bar{k}_{i}\right] & / * P_{2} \leftarrow \tilde{P}_{1} \text { or } P_{2} \leftarrow P_{1}-P_{2} * /
\end{array}
$$

10 return P_{2}

Side-Channel Resistant Scalar Multiplication

 Algorithms over Finite Fields
Efficiency Evaluation on GF(2m)

Algorithm	Complexity (per bit of scalar)
Generic Montgomery Ladder	$18 \mathrm{M}+10 \mathrm{~S} \approx 28 \mathrm{M}$
Lopez et al. (1999)	$6 \mathrm{M}+5 \mathrm{~S} \approx 11 \mathrm{M}$
BasicScalarMult	$\mathbf{2 2 M}+\mathbf{4 S} \approx \mathbf{2 6 M}$

Side-Channel Resistant Scalar Multiplication

 Algorithms over Finite Fields
Efficiency Evaluation on GF(p)

Algorithm	Complexity (per bit of scalar)
Generic Montgomery Ladder	$12 \mathrm{M}+13 \mathrm{~S} \approx 25 \mathrm{M}$
Brier et al. (2002)	$15 \mathrm{M}+5 \mathrm{~S} \approx 20 \mathrm{M}$
Izu et al. (2002)	$13 \mathrm{M}+4 \mathrm{~S} \approx 17 \mathrm{M}$
BasicScalarMult	$\mathbf{1 2 M}+6 \mathrm{~S} \approx 18 \mathrm{M}$
OptScalarMult	$\mathbf{1 0 M}+6 \mathrm{~S} \approx 16 \mathrm{M}$

Conclusion

\square Side-channel resistance is a major issue in constrained devices...

■ ... however efficiency should not suffer

■ We wanted to improve scalar multiplication, the main part of ECC, on these 2 points

■ Our results :

- an alternative algorithm on GF($\left.2^{m}\right)$,
- very interesting replacement on $\operatorname{GF}(p)$

Thank you. Questions?

$\triangle \triangle 1$.

