Defeating with Fault Injection a Combined Attack Resistant Exponentiation

Benoit Feix UL Security Lab, UK XLIM, Limoges University

Alexandre Venelli INSIDE Secure, France

Workshop COSADE 2013

Paris, 7 March 2013

Agenda

- **1.** What is a combined attack?
- **2.** Algorithm of Schmidt et al.
- **3.** Fault attack
 - 1. On simplified algorithm
 - 2. On complete algorithm
- 4. Combined attack
- **5.** Improved algorithm
- 6. Conclusion

What is a combined attack? General principle

- Combines a fault attack with a leakage analysis
- <u>Main goal</u>: attack implementations resistant against fault and leakage analysis
- New implementations and new countermeasures often required

What is a combined attack?

Example on L2R exponentiation

 ${\bf Algorithm \ 1} \ {\rm Left-to-right \ multiply \ always \ exponentiation}$

Input: $x \in \mathbb{G}$ and $d = (d_{k-1}, \ldots, d_0)_2 \in \mathbb{N}$ Output: x^d 1: $R[0] \leftarrow 1$ 2: $R[1] \leftarrow x$ 3: $t \leftarrow 0$ 4: for i = k - 1 to 0 do 5: $R[0] \leftarrow R[0].R[t]$ 6: $t \leftarrow t \oplus d_i$ 7: $i \leftarrow i - 1 + t$ 8: end for 9: return R[0]

Add: classical fault checking mechanism

- inverse operation calculation
- doubling the calculation to verify equality of both

or

What is a combined attack? Example on L2R exponentiation

What is a combined attack?

Example on L2R exponentiation

Algorithm 1 Left-to-right multiply always exponentiation

Input: $x \in \mathbb{G}$ and $d = (d_{k-1}, \ldots, d_0)_2 \in \mathbb{N}$ **Output:** x^d Skip instruction 1: $R[0] \leftarrow 1$ Suppose R[1] = 02: $R[1] \leftarrow x$ 3: $t \leftarrow 0$ 4: for i = k - 1 to 0 do 5: $R[0] \leftarrow R[0].R[t]$ 6: $t \leftarrow t \oplus d_i$ 7: $i \leftarrow i - 1 + t$ 8: end for 9: return R[0]

What is a combined attack? Example on L2R exponentiation

The use of the faulted register R[1] is visible by SPA

What is a combined attack?

History on asymmetric

• 2007: Attack on atomic left-to-right exponentiation

- Amiel et al. (FDTC)

2010: Resistant algorithms for RSA and ECC

- Schmidt et al. (LATINCRYPT)

• 2011: Attack on scalar multiplication

- Fan et al. (CHES)

2012: Attack on prime generation

- Vuillaume et al. (COSADE)

2013: Attack on RSA-CRT

– Barbu et al. (PKC)

Agenda

- **1.** What is a combined attack?
- **2.** Algorithm of Schmidt et al.
- **3.** Fault attack
 - 1. On simplified algorithm
 - 2. On complete algorithm
- 4. Combined attack
- 5. Improved algorithm
- 6. Conclusion

Algorithm of Schmidt et al. General principle

- Add to (potentially any) SPA-resistant exponentiation
 - An infective computation method
 - An invariant system
- Link those two protections to strengthen the resistance

Exponentiation

Algorithm 1 Schmidt *et al.* [20, Alg. 3] left-to-right exponentiation. Input: $d = (d_{t-1}, \ldots, d_0)_2, m \in \mathbb{Z}_N, N$ and block length W.

Output: $m^d \mod N$ 1: $r_1 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ 2: $r_2 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ 3: $i \leftarrow (r_2^{-1} \mod N) \cdot r_2$ 4: $R_0 \leftarrow i \cdot 1 \mod Nr_2$ 5: $R_1 \leftarrow i \cdot m \mod Nr_2$ 6: $\bar{d} \leftarrow d + r_1 \cdot \varphi(N)$ 7: $[\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [\psi_0(\bar{d}^{(l-1)}), \dots, \psi_0(\bar{d}^{(0)})]$ 8: $k \leftarrow 0$ 9: $i \leftarrow \mathsf{bitlength}(\tilde{d}) - 1$ 10: while j > 0 do $R_0 \leftarrow R_0 \cdot R_k \mod Nr_2$ 11: 12:if $(R_0 = 0)$ or $(R_1 = 0)$ then $[\tilde{d}^{(l-1)},\ldots,\tilde{d}^{(0)}] \leftarrow [1,\ldots,1]$ 13:14:end if $\hat{d} \leftarrow \psi_{(R_0+R_1 \mod r_2)}^{-1} (\tilde{d}^{(\lfloor j/W \rfloor)})$ 15: $k \leftarrow k \oplus \mathsf{bit}(\hat{d}, j \mod W)$ 16:17: $i \leftarrow i - \neg k$ 18: end while 19: $c \leftarrow R_0 \mod N$ return c

Invariant

Algorithm 1 Schmidt et al. [20, Alg. 3] left-to-right exponentiation.

Input: $d = (d_{t-1}, \ldots, d_0)_2, m \in \mathbb{Z}_N, N$ and block length W. **Output:** $m^d \mod N$

1: $r_1 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ 2: $r_2 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ $3: i \leftarrow (r_2^{-1} \bmod N) \cdot r_2$ 4: $R_0 \leftarrow i \cdot 1 \mod Nr_2$ 5: $R_1 \leftarrow i \cdot m \mod Nr_2$ 6: $\bar{d} \leftarrow d + r_1 \cdot \varphi(N)$ 7: $[\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [\psi_0(\bar{d}^{(l-1)}), \dots, \psi_0(\bar{d}^{(0)})]$ 8: $k \leftarrow 0$ 9: $j \leftarrow \mathsf{bitlength}(\tilde{d}) - 1$ 10: while j > 0 do $R_0 \leftarrow R_0 \cdot R_k \mod Nr_2$ 11: 12:if $(R_0 = 0)$ or $(R_1 = 0)$ then $[\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [1, \dots, 1]$ 13:14:end if $\hat{d} \leftarrow \psi_{(R_0 + R_1 \mod r_2)}^{-1} (\tilde{d}^{(\lfloor j/W \rfloor)})$ 15: $k \leftarrow k \oplus \mathsf{bit}(\hat{d}, j \mod W)$ 16:17: $j \leftarrow j - \neg k$ 18: end while 19: $c \leftarrow R_0 \mod N$ return c

Idempotent element $i \in \mathbb{Z}_{Nr_2}$ such that:

- $i \equiv 1 \mod N$
- $i \equiv 0 \mod r_2$

Invariant

Algorithm 1 Schmidt et al. [20, Alg. 3] left-to-right exponentiation. **Input:** $d = (d_{t-1}, \ldots, d_0)_2, m \in \mathbb{Z}_N, N$ and block length W. **Output:** $m^d \mod N$ 1: $r_1 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ Idempotent element $i \in \mathbb{Z}_{Nr_2}$ such 2: $r_2 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ that: 3: $i \leftarrow (r_2^{-1} \mod N) \cdot r_2$ 4: $R_0 \leftarrow i \cdot 1 \mod Nr_2$ • $i \equiv 1 \mod N$ 5: $R_1 \leftarrow i \cdot m \mod Nr_2$ • $i \equiv 0 \mod r_2$ 6: $d \leftarrow d + r_1 \cdot \varphi(N)$ 7: $[\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [\psi_0(\bar{d}^{(l-1)}), \dots, \psi_0(\bar{d}^{(l-1)})]$ 8: $k \leftarrow 0$ 9: $i \leftarrow \mathsf{bitlength}(\tilde{d}) - 1$ *i* "mixed in" the registers R_0 and R_1 10: while j > 0 do $R_0 \leftarrow R_0 \cdot R_k \mod Nr_2$ 11: 12:if $(R_0 = 0)$ or $(R_1 = 0)$ then $[\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [1, \dots, 1]$ 13:14:end if $\hat{d} \leftarrow \psi_{(R_0 + R_1 \mod r_2)}^{-1} (\tilde{d}^{(\lfloor j/W \rfloor)})$ 15: $k \leftarrow k \oplus \mathsf{bit}(\hat{d}, j \mod W)$ 16:17: $j \leftarrow j - \neg k$ 18: end while 19: $c \leftarrow R_0 \mod N$ return c

Invariant

Algorithm 1 Schmidt et al. [20, Alg. 3] left-to-right exponentiation.

Input: $d = (d_{t-1}, \ldots, d_0)_2, m \in \mathbb{Z}_N, N$ and block length W. **Output:** $m^d \mod N$

1: $r_1 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ 2: $r_2 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ 3: $i \leftarrow (r_2^{-1} \mod N) \cdot r_2$ 4: $R_0 \leftarrow i \cdot 1 \mod Nr_2$ 5: $R_1 \leftarrow i \cdot m \mod Nr_2$ 6: $d \leftarrow d + r_1 \cdot \varphi(N)$ 7: $[\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [\psi_0(\bar{d}^{(l-1)}), \dots, \psi_0(\bar{d}^{(0)})]$ 8: $k \leftarrow 0$ 9: $j \leftarrow \mathsf{bitlength}(\tilde{d}) - 1$ 10: while j > 0 do $R_0 \leftarrow R_0 \cdot R_k \mod Nr_2$ 11: 12:if $(R_0 = 0)$ or $(R_1 = 0)$ then $[\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [1, \dots, 1]$ 13:14:end if $\hat{d} \leftarrow \psi_{(R_0 + R_1 \bmod r_2)}^{-1} (\tilde{d}(\lfloor j/W \rfloor))$ 15: $k \leftarrow k \oplus \mathsf{bit}(\hat{d}, j \mod W)$ 16: $j \leftarrow j - \neg k$ 17:18: end while 19: $c \leftarrow R_0 \mod N$ return c

Idempotent element $i \in \mathbb{Z}_{Nr_2}$ such that:

- $i \equiv 1 \mod N$
- $i \equiv 0 \mod r_2$

i "mixed in" the registers R_0 and R_1

Efficient test of integrity: $R_0 \mod r_2 ?= 0 \mod r_2$ $R_1 \mod r_2 ?= 0 \mod r_2$

Infective computation

Algorithm 1 Schmidt et al. [20, Alg. 3] left-to-right exponentiation. **Input:** $d = (d_{t-1}, \ldots, d_0)_2, m \in \mathbb{Z}_N, N$ and block length W. **Output:** $m^d \mod N$ 1: $r_1 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ Encode the exponent using 2: $r_2 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ $\psi_{\alpha}: \mathbb{Z}_{r_2} \times \mathbb{Z}_{r_2} \to \mathbb{Z}_{r_2}$ 3: $i \leftarrow (r_2^{-1} \mod N) \cdot r_2$ • $\psi_{\alpha}(d^{(j)}) = (\alpha + N)^{-1} d^{(j)} \mod r_2$ 4: $R_0 \leftarrow i \cdot 1 \mod Nr_2$ 5: $R_1 \leftarrow i \cdot m \mod Nr_2$ • $\psi_{\alpha}^{-1}(\tilde{d}^{(j)}) = (\alpha + N). \tilde{d}^{(j)} \mod r_2$ 6: $\bar{d} \leftarrow d + r_1 \cdot \varphi(N)$ (: $[\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [\psi_0(\bar{d}^{(l-1)}), \dots, \psi_0(\bar{d}^{(0)})]$ $8 \cdot k \leftarrow 0$ 9: $i \leftarrow \mathsf{bitlength}(\tilde{d}) - 1$ 10: while j > 0 do $R_0 \leftarrow R_0 \cdot R_k \mod Nr_2$ 11: 12:if $(R_0 = 0)$ or $(R_1 = 0)$ then $[\tilde{d}^{(l-1)},\ldots,\tilde{d}^{(0)}] \leftarrow [1,\ldots,1]$ 13: 14:end if $\hat{d} \leftarrow \psi_{(R_0+R_1 \mod r_2)}^{-1} (\tilde{d}^{(\lfloor j/W \rfloor)})$ 15: $k \leftarrow k \oplus \mathsf{bit}(\hat{d}, j \mod W)$ 16: $j \leftarrow j - \neg k$ 17:18: end while 19: $c \leftarrow R_0 \mod N$ return c

Infective computation

Algorithm 1 Schmidt et al. [20, Alg. 3] left-to-right exponentiation. **Input:** $d = (d_{t-1}, \ldots, d_0)_2, m \in \mathbb{Z}_N, N$ and block length W. **Output:** $m^d \mod N$ 1: $r_1 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ Encode the exponent using 2: $r_2 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ $\psi_{\alpha}: \mathbb{Z}_{r_2} \times \mathbb{Z}_{r_2} \to \mathbb{Z}_{r_2}$: 3: $i \leftarrow (r_2^{-1} \mod N) \cdot r_2$ • $\psi_{\alpha}(d^{(j)}) = (\alpha + N)^{-1} d^{(j)} \mod r_2$ 4: $R_0 \leftarrow i \cdot 1 \mod Nr_2$ 5: $R_1 \leftarrow i \cdot m \mod Nr_2$ • $\psi_{\alpha}^{-1}(\tilde{d}^{(j)}) = (\alpha + N). \tilde{d}^{(j)} \mod r_2$ 6: $d \leftarrow d + r_1 \cdot \varphi(N)$ 7: $[\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [\psi_0(\bar{d}^{(l-1)}), \dots, \psi_0(\bar{d}^{(0)})]$ 8: $k \leftarrow 0$ 9: $i \leftarrow \mathsf{bitlength}(\tilde{d}) - 1$ If $\alpha = 0 \mod r_2$ 10: while j > 0 do Correct decoding $R_0 \leftarrow R_0 \cdot R_k \mod Nr_2$ 11: 12:if $(R_0 = 0)$ or $(R_1 = 0)$ then Else $[\tilde{d}^{(l-1)},\ldots,\tilde{d}^{(0)}] \leftarrow [1,\ldots,1]$ 13:False decoding 14:end if $\hat{d} \leftarrow \psi_{(R_0 + R_1 \bmod r_2)}^{-1} (\tilde{d}^{(\lfloor j/W \rfloor)})$ 15: $k \leftarrow k \oplus \mathsf{bit}(\hat{d}, j \mod W)$ 16: $i \leftarrow i - \neg k$ 17:18: end while 19: $c \leftarrow R_0 \mod N$ return c

Link invariant and infective computation

Algorithm 1 Schmidt et al. [20, Alg. 3] left-to-right exponentiation.

Input: $d = (d_{t-1}, \ldots, d_0)_2, m \in \mathbb{Z}_N, N$ and block length W. **Output:** $m^d \mod N$

```
1: r_1 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)
 2: r_2 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)
 3: i \leftarrow (r_2^{-1} \mod N) \cdot r_2
 4: R_0 \leftarrow i \cdot 1 \mod Nr_2
 5: R_1 \leftarrow i \cdot m \mod Nr_2
 6: d \leftarrow d + r_1 \cdot \varphi(N)
 7: [\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [\psi_0(\bar{d}^{(l-1)}), \dots, \psi_0(\bar{d}^{(0)})]
 8: k \leftarrow 0
 9: j \leftarrow \mathsf{bitlength}(\tilde{d}) - 1
10: while j > 0 do
            R_0 \leftarrow R_0 \cdot R_k \mod Nr_2
11:
12:
          if (R_0 = 0) or (R_1 = 0) then
            [\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [1, \dots, 1]
13:
14:
             end if
            \hat{d} \leftarrow \psi_{(R_0 + R_1 \bmod r_2)}^{-1} (\tilde{d}^{\lfloor j/W \rfloor})
15:
            k \leftarrow k \oplus \mathsf{bit}(\hat{d}, j \bmod W)
16:
            i \leftarrow i - \neg k
17:
18: end while
19: c \leftarrow R_0 \mod N
      return c
```

Encode the exponent using $\psi_{\alpha}: \mathbb{Z}_{r_2} \times \mathbb{Z}_{r_2} \to \mathbb{Z}_{r_2}:$ • $\psi_{\alpha}(d^{(j)}) = (\alpha + N)^{-1} d^{(j)} \mod r_2$ • $\psi_{\alpha}^{-1}(\tilde{d}^{(j)}) = (\alpha + N) d^{(j)} \mod r_2$

If $\alpha = 0 \mod r_2$ Correct decoding

Else

False decoding

α: = R₀ + R₁ mod r₂ is the invariant check

Algorithm of Schmidt et al. Additional check

Algorithm 1 Schmidt et al. [20, Alg. 3] left-to-right exponentiation. **Input:** $d = (d_{t-1}, \ldots, d_0)_2, m \in \mathbb{Z}_N, N$ and block length W. **Output:** $m^d \mod N$ 1: $r_1 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ 2: $r_2 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ 3: $i \leftarrow (r_2^{-1} \mod N) \cdot r_2$ 4: $R_0 \leftarrow i \cdot 1 \mod Nr_2$ 5: $R_1 \leftarrow i \cdot m \mod Nr_2$ If R_0 or R_1 is erased by fault 6: $d \leftarrow d + r_1 \cdot \varphi(N)$ 7: $[\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [\psi_0(\bar{d}^{(l-1)}), \dots, \psi_0(\bar{d}^{(0)})]$ Corrupt the exponent 8: $k \leftarrow 0$ 9: $j \leftarrow \mathsf{bitlength}(\tilde{d}) - 1$ 10: while j > 0 do $R_0 \leftarrow R_0 \cdot R_k \mod Nr_2$ 11: if $(R_0 = 0)$ or $(R_1 = 0)$ then Check against the combined attack 12: $[\tilde{d}^{(l-1)},\ldots,\tilde{d}^{(0)}] \leftarrow [1,\ldots,1]$ 13:of Amiel et al. 2007 end if $\hat{d} \leftarrow \psi_{(R_0+R_1 \mod r_2)}^{-1} (\tilde{d}^{\lfloor j/W \rfloor})$ 14:15: $k \leftarrow k \oplus \mathsf{bit}(\hat{d}, j \mod W)$ 16: $i \leftarrow i - \neg k$ 17:18: end while 19: $c \leftarrow R_0 \mod N$ return c

Output

```
Algorithm 1 Schmidt et al. [20, Alg. 3] left-to-right exponentiation.
Input: d = (d_{t-1}, \ldots, d_0)_2, m \in \mathbb{Z}_N, N and block length W.
Output: m^d \mod N
 1: r_1 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)
 2: r_2 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)
 3: i \leftarrow (r_2^{-1} \mod N) \cdot r_2
 4: R_0 \leftarrow i \cdot 1 \mod Nr_2
 5: R_1 \leftarrow i \cdot m \mod Nr_2
                                                                                                      Returns (possibly) faulted results 😊
 6: d \leftarrow d + r_1 \cdot \varphi(N)
 7: [\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [\psi_0(\bar{d}^{(l-1)}), \dots, \psi_0(\bar{d}^{(0)})]
 8: k \leftarrow 0
 9: i \leftarrow \mathsf{bitlength}(\tilde{d}) - 1
10: while j > 0 do
          R_0 \leftarrow R_0 \cdot R_k \mod Nr_2
11:
12:
         if (R_0 = 0) or (R_1 = 0) then
          [\tilde{d}^{(l-1)},\ldots,\tilde{d}^{(0)}] \leftarrow [1,\ldots,1]
13:
          end if
14:
         \hat{d} \leftarrow \psi_{(R_0+R_1 \mod r_2)}^{-1} (\tilde{d}^{\lfloor j/W \rfloor})
15:
         k \leftarrow k \oplus \mathsf{bit}(\hat{d}, j \bmod \mathcal{V})
16:
         j \leftarrow j - \neg k
17:
18: end while
19: c \leftarrow R_0 \mod N
      return c
```


Agenda

- **1.** What is a combined attack?
- **2.** Algorithm of Schmidt et al.
- **3.** Fault attack
 - 1. On simplified algorithm
 - 2. On complete algorithm
- 4. Combined attack
- **5.** Improved algorithm
- 6. Conclusion

On simplified algorithm

Algorithm 1 Schmidt et al. [20, Alg. 3] left-to-right exponentiation. **Input:** $d = (d_{t-1}, \ldots, d_0)_2, m \in \mathbb{Z}_N, N$ and block length W. **Output:** $m^d \mod N$ 1: $r_1 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ Simplified version: no exponent blinding 2: $r_2 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ 3: $i \leftarrow (r_2^{-1} \mod N) \cdot r_2$ 4: $R_0 \leftarrow i \cdot 1 \mod Nr_2$ 5: $R_1 \leftarrow i \cdot m \mod Nr_2$ 6: $\overline{d} \leftarrow d \leftrightarrow \tau_1 \quad \varphi(\overline{N})$ 7: $|\overline{d^{(i-1)}, \dots, d^{(0)}}| \leftarrow |\psi_0(\overline{d}^{(l-1)}), \dots, \psi_0(\overline{d}^{(0)})]$ 8: $k \leftarrow 0$ 9: $i \leftarrow \mathsf{bitlength}(\tilde{d}) - 1$ 10: while j > 0 do $R_0 \leftarrow R_0 \cdot R_k \mod Nr_2$ 11: 12:if $(R_0 = 0)$ or $(R_1 = 0)$ then $[\tilde{d}^{(l-1)},\ldots,\tilde{d}^{(0)}] \leftarrow [1,\ldots,1]$ 13:14:end if $\hat{d} \leftarrow \psi_{(R_0 + R_1 \mod r_2)}^{-1} (\tilde{d}^{(\lfloor j/W \rfloor)})$ 15: $k \leftarrow k \oplus \mathsf{bit}(\hat{d}, j \mod W)$ 16:17: $i \leftarrow i - \neg k$ 18: end while 19: $c \leftarrow R_0 \mod N$ return c

On simplified algorithm

Algorithm 1 Schmidt et al. [20, Alg. 3] left-to-right exponentiation. **Input:** $d = (d_{t-1}, \ldots, d_0)_2, m \in \mathbb{Z}_N, N$ and block length W. **Output:** $m^d \mod N$ 1: $r_1 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ Simplified version: no exponent blinding 2: $r_2 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ 3: $i \leftarrow (r_2^{-1} \mod N) \cdot r_2$ 4: $R_0 \leftarrow i \cdot 1 \mod Nr_2$ 5: $R_1 \leftarrow i \cdot m \mod Nr_2$ 6: $\overline{d} \leftarrow d \vdash r_1 \quad \varphi(\overline{N})$ 7: $|\overline{d^{(i-1)}, \dots, \widetilde{d^{(0)}}}| \leftarrow |\psi_0(\overline{d}^{(l-1)}), \dots, \psi_0(\overline{d}^{(0)})]$ 8: $k \leftarrow 0$ 9: $i \leftarrow \mathsf{bitlength}(\tilde{d}) - 1$ Skip instruction 10: while j > 0 do $R_0 \leftarrow R_0 \cdot R_k \mod Nr_2$ 11: $\neq d = \psi_0^{-1}(1) = N \mod r_2$ if $(R_0 = 0)$ or $(R_1 = 0)$ then $[\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [1, \dots, 1]$ 12:13:For the rest of the exponentiation! 14:end if $\hat{d} \leftarrow \psi_{(R_0 + R_1 \mod r_2)}^{-1} (\tilde{d}^{\lfloor j/W \rfloor})$ 15: $k \leftarrow k \oplus \mathsf{bit}(\hat{d}, j \mod W)$ 16: $j \leftarrow j - \neg k$ 17:18: end while 19: $c \leftarrow R_0 \mod N$ return c

On simplified algorithm

Algorithm 1 Schmidt et al. [20, Alg. 3] left-to-right exponentiation. **Input:** $d = (d_{t-1}, \ldots, d_0)_2, m \in \mathbb{Z}_N, N$ and block length W. **Output:** $m^d \mod N$ 1: $r_1 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ Simplified version: no exponent blinding 2: $r_2 \leftarrow \mathsf{random}(1, 2^{\lambda} - 1)$ 3: $i \leftarrow (r_2^{-1} \mod N) \cdot r_2$ 4: $R_0 \leftarrow i \cdot 1 \mod Nr_2$ 5: $R_1 \leftarrow i \cdot m \mod Nr_2$ 6: $\overline{d} \leftarrow d \leftrightarrow \tau_1 \quad \varphi(\overline{N})$ 7: $|\overline{d^{(l-1)}, \dots, \widetilde{d}^{(0)}}| \leftarrow |\psi_0(\overline{d}^{(l-1)}), \dots, \psi_0(\overline{d}^{(0)})|$ 8: $k \leftarrow 0$ 9: $i \leftarrow \mathsf{bitlength}(\tilde{d}) - 1$ Skip instruction 10: while j > 0 do $R_0 \leftarrow R_0 \cdot R_k \mod Nr_2$ 11: $\hat{d} = \psi_0^{-1}(1) = N \mod r_2$ if $(R_0 = 0)$ or $(R_1 = 0)$ then $[\tilde{d}^{(l-1)}, \dots, \tilde{d}^{(0)}] \leftarrow [1, \dots, 1]$ 12:13:For the rest of the exponentiation! 14:end if $\hat{d} \leftarrow \psi_{(R_0+R_1 \mod r_2)}^{-1} (\tilde{d}^{(\lfloor j/W \rfloor)})$ 15: \rightarrow Only W bits of \hat{d} are used $k \leftarrow k \oplus \mathsf{bit}(\hat{d}, j \mod W)$ 16:Let $H = (N \mod r_2) \mod 2^W$ 17: $j \leftarrow j - \neg k$ 18: end while 19: $c \leftarrow R_0 \mod N$ return c

On simplified algorithm

- Attacker knows v first bits of the exponent
- Fault *u* bits after in the loop
- Faulted exponent \check{d}_u of the result \check{S}_u :

Known part u bits to retrieve

with \tilde{t} the bit size of the encoded exponent \tilde{d}

On simplified algorithm

• Faulted exponent \check{d}_u :

$$\check{d}_u = \sum_{i=\tilde{t}-\nu}^{\tilde{t}-1} 2^i \cdot \widetilde{d}_i + \sum_{i=\tilde{t}-\nu-u}^{\tilde{t}-\nu-1} 2^i \cdot \widetilde{d}_i + \sum_{i=0}^{\tilde{t}-\nu-u-1} 2^i \cdot H_{(i \mod W)}$$

Known part u bits to retrieve

- Guesses: *u* bits of *d* and *W* bits of *H*
- \rightarrow Complete guessed result $S_g(u, H)$
- Validate guess by checking: $S_g(u, H)? = \check{S}_u$

On simplified algorithm

- Attack retrieves *u* bits at a time
- Only possible if no exponent blinding
- Computational complexity:

$$\mathcal{C} = \mathcal{O}\left(\frac{2^{(u+W)}.\,\tilde{t}}{u}\right)$$

• Number of faults:

$$\mathcal{F} = \mathcal{O}\left(rac{\widetilde{t}}{u}
ight)$$

On simplified algorithm

• Example of computational complexities for u = 1

W	512 bits	1024 bits	2048 bits
8	$C = 2^{18}$	$C = 2^{19}$	$C = 2^{20}$
16	$C = 2^{26}$	$C = 2^{27}$	$C = 2^{28}$
32	$C = 2^{42}$	$C = 2^{43}$	$C = 2^{44}$

• Validated on PC using the GMP library

Agenda

- **1.** What is a combined attack?
- **2.** Algorithm of Schmidt et al.
- **3.** Fault attack
 - 1. On simplified algorithm
 - 2. On complete algorithm
- 4. Combined attack
- **5.** Improved algorithm
- 6. Conclusion

On complete algorithm

- Exponent blinding: $\overline{d} = d + r_1 \varphi(N) = d + r_1 N r_1 (p + q 1)$
- Effect of the blinding:

$$\overline{d} = \sum_{i=t}^{t+\lambda-1} 2^{i} (r_1 N)_i + \sum_{i=\frac{t}{2}+\lambda}^{t-1} 2^{i} (d+r_1 N)_i + \sum_{i=0}^{\frac{t}{2}+\lambda-1} 2^{i} (d+r_1 \varphi(N))_i$$

On complete algorithm

- MSB part of d
- Guesses on u bits of d, W bits of H and λ bits of r_1
- → Complete guessed exponent
- Validate guess by checking:

 $\check{S}_u? = m^{\overline{d}_{[u]} + \overline{d}_{<u>}} \mod N$

On complete algorithm

On complete algorithm

• LSB part of d

- Guesses on u bits of d, W bits of H and λ bits of r_1
- → Complete guessed exponent
- Validate guess by checking:

$$\check{S}_u? = m^{\overline{d}_{[u]} + \overline{d}_{}} \mod N$$

- Here, we recover u bits of δ and not of d
- As d and (p + q 1) are fixed values between exponentiations
- We can retrieve *d* by faulting multiple times at the instant *u*

On complete algorithm

Computational complexity:

$$\mathcal{C} = \mathcal{O}\left(\frac{2^{(u+W+\lambda)} \cdot t}{u}\right)$$

• Number of faults:

$$\mathcal{F} = \mathcal{O}\left(\frac{t}{u}\right)$$

- Size of r_2 does not impact the attack, only the size W
- Applicability of the attack depends on the size λ of r_1

Agenda

- **1.** What is a combined attack?
- **2.** Algorithm of Schmidt et al.
- **3.** Fault attack
 - 1. On simplified algorithm
 - 2. On complete algorithm
- 4. Combined attack
- **5.** Improved algorithm
- 6. Conclusion

Combined attack

Fault injection and differential side-channel

Combined attack

Fault injection and differential side-channel

• Execute the calculation many times (k) on the attacked device

- At each execution *i*

- Fault the step 6. execution
- Acquire and store the side-channel trace C_i of the exponentiation
- Apply with these *k* curves the differential analysis from Amiel et al.
 - Distinguishing multiplications from squaring operations SAC 2008.
- Allow to recover the secret exponent *d*
- Attack success depends essentially on the feasibility of the fault injection on the attacked hardware

Combined attack

Fault injection and template analysis

• Template pre-processing phase required on the attack device

- Need to store many curves of

- The squaring operation $R_0 \times R_0$ with random values R_0
- The multiplication operation $R_0 \times R_1$ with random values R_0 and R_1

• Execute the calculation many times (*u*) on the attacked device

- At each execution *i*

- Fault the step 6. execution
- Acquire and store the side-channel trace C_i of the exponentiation

- Apply with these *u* curves the Template analysis from Hanley et al.

- Using templates to distinguish multiplications from squaring operations -International Journal of Information Security, 10. 2011.
- Allows to recover the secret exponent d
- Attack success depends essentially on the feasibility of the fault injection on the attacked hardware

Agenda

- **1.** What is a combined attack?
- **2.** Algorithm of Schmidt et al.
- **3.** Fault attack
 - 1. On simplified algorithm
 - 2. On complete algorithm
- 4. Combined attack
- 5. Improved algorithm
- 6. Conclusion

Improved algorithm

Improved algorithm

Agenda

- **1.** What is a combined attack?
- **2.** Algorithm of Schmidt et al.
- **3.** Fault attack
 - 1. On simplified algorithm
 - 2. On complete algorithm
- 4. Combined attack
- **5.** Improved algorithm
- 6. Conclusion

Conclusion

We have presented two new attacks:

- First: a simple fault injection technique
 - Apply with and without the exponent blinding countermeasure
 - Allow to recover the secret exponent with few faulty ciphertexts
- Second: combined attacks
 - Fault injection and Amiel et al. differential analysis
 - Fault injection and Hanley et al. template analysis
- We have presented an improved version of the Schmidt et al. algorithm that thwarts those attacks.

Thanks for your attention ...

