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Modular reduction  

• Modular reduction is used in Public Key Cryptography 

─ RSA, Diffie-Hellman, ElGamal in 𝐺𝐹(𝑝) 

─ Elliptic Curve Cryptography in 𝐺𝐹(𝑝) and 𝐺𝐹(2𝑛) 

 

• Montgomery and Barrett are the most well-known 

─ Pre-computational step 

─ Trade costly multi-precision division for faster multi-precision 

multiplications 

 

• Focus on RSA and modular exponentiation in particular 
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Differential Side-Channel 
Analysis 

• Principle of DSCA 

─ Find relationships between observed data and some key-related 

variable using statistical tests 

 

• Classic DSCA countermeasures 

─ Message blinding, exponent blinding, exponent splitting 

 

• Example : Message blinding in RSA 

─ Instead of computing 𝑆 = 𝑥𝑒 𝑚𝑜𝑑 𝑚 

─ Let 𝑟 a random, pre-compute 𝑟′ = (𝑟−1)𝑒 𝑚𝑜𝑑 𝑚 

─ Let 𝑥′ = 𝑟𝑥 𝑚𝑜𝑑 𝑚 

─ Compute 𝑆′ = 𝑥′𝑒𝑚𝑜𝑑 𝑚 

─ Correct result : 𝑆 = 𝑆′𝑟′𝑚𝑜𝑑 𝑚 
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Redundant modular 
arithmetic 

• DSCA countermeasure 

 

• Principle : Instead of working with integers modulo 𝑚, 

integers are kept modulo 𝑚 plus some multiples of 𝑚 

 

• Some propositions based on the idea 

─ Time-constant Montgomery reduction (Walter 2002) 

─ DSCA countermeasure for AES (Golic and Tymen 2002) 

─ DSCA countermeasure in ECC (Smart et al. 2008) 

 

• We extend this work by proposing modular reduction 

algorithms based on the classic Montgomery and Barrett 

reductions 
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Montgomery reduction 
algorithm (1) 

• Pre-computed value :  

─ 𝑅 > 𝑚 coprime to 𝑚, e.g. 𝑅 = 𝑏𝑛, and 𝛽 = −𝑚−1 𝑚𝑜𝑑 𝑅 

 

• Integers are transformed into Montgomery form : 

─ 𝑢 → 𝑢𝑅 𝑚𝑜𝑑 𝑚 

─ 𝑣 → 𝑣𝑅 𝑚𝑜𝑑 𝑚 

 

• Consider the multiplication 𝑥 = 𝑢𝑣𝑅2  

 

• We want to reduce 𝑥 modulo 𝑚 
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Montgomery reduction 
algorithm (2) 
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Dynamic redundant 
Montgomery reduction (1) 

• Property of classic Montgomery reduction :  
𝑥+𝑚 𝑥𝛽 𝑚𝑜𝑑 𝑅

𝑅
= 𝑥𝑅−1 𝑚𝑜𝑑 𝑚 + 𝜖𝑚 with 𝜖 ∈ {0,1} 

 

• Now consider the following steps : 

1. 𝑠1 ← 𝑥 𝑚𝑜𝑑 𝑅 

2. 𝑠2 ← 𝛽𝑠1 𝑚𝑜𝑑 𝑅 

3. 𝑠2 ← 𝑠2 + 𝑘𝑅, with 𝑘 some random integer 

4. 𝑠3 ← 𝑚𝑠2 

5. 𝑡 ← (𝑥 + 𝑠3)/𝑅 

 

• Hence at the end of the reduction 

𝑥𝑅−1 𝑚𝑜𝑑 𝑚 + 𝑘𝑚 ≤ 𝑡 ≤ 𝑥𝑅−1 𝑚𝑜𝑑 𝑚 + 𝑘 + 1 𝑚 
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Dynamic redundant 
Montgomery reduction (2) 

• Added modulus  output of the reduction bigger in size  

problem to further reduce it 

 

• Solution : modify the pre-computed values of Montgomery to 

process bigger integers 

 

• Instead of the classical 𝑅 = 𝑏𝑛, we use 𝑅′ = 𝑏𝑛+2𝑖 and 

consider integers 𝑥 < 𝑚𝑅′ < 𝑏2𝑛+2𝑖 

 

• Hence the output of the reduction can be integers 𝑡 < 𝑏𝑛+𝑖 

 

• Hence the added random 𝑘 should be 𝑘 < 𝑏𝑖 − 1 
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Barrett reduction algorithm 
(1) 

• Pre-computed value : 

─𝜇 =
𝑏𝑛

𝑚
 

 

• Integers 𝑢 and 𝑣  are not transformed 

 

• Consider the multiplication 𝑥 = 𝑢𝑣 

 

• We want to reduce 𝑥 modulo 𝑚 
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Barrett reduction algorithm 
(2) 
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Dynamic redundant Barrett 
reduction (1)  

• Property of classic Barrett reduction : 

𝑥 𝑚𝑜𝑑 𝑚 + 𝜖𝑚 with 𝜖 ∈ {0, 2} 

• Estimated quotient : 𝑞 =

𝑥

𝑏𝑛+𝛽𝜇𝛼

𝑏𝛼−𝛽  with 𝜇𝛼 =
𝑏𝑛+𝛼

𝑚
 for 𝛼, 𝛽 

integers 

 

• Bounds on the error from Dhem’s work not applicable as 

maximal error is rarely reached 

 

• We can undervalue the estimated quotient to add multiples of 

the modulus 
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Dynamic redundant Barrett 
reduction (2)  

• Consider the following steps 

1. 𝑞1 ← ⌊
𝑥

𝑏𝑛+𝛽⌋ 

2. 𝑞2 ← 𝜇𝛼𝑞1 

3. 𝑞3 ← ⌊
𝑞2

𝑏𝛼−𝛽⌋ 

4. 𝑞3 ← 𝑞3 − 𝑘, with 𝑘 some random integer 

5. 𝑟1 ← 𝑥 𝑚𝑜𝑑 𝑏𝛼 

6. 𝑟2 ← 𝑚𝑞3 𝑚𝑜𝑑 𝑏𝛼 

7. 𝑟 ← 𝑟1 − 𝑟2 
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Dynamic redundant Barrett 
reduction (3)  

• We choose 𝛼 = 𝑛 + 2𝑖  and 𝛽 = −1  𝑞  undervalued by 2 

 

• Hence at the end of the reduction 

𝑥 𝑚𝑜𝑑 𝑚 + 𝑘𝑚 ≤ 𝑟 ≤ 𝑥 𝑚𝑜𝑑 𝑚 + 𝑘 + 2 𝑚 

 

• Larger pre-computed constant to process bigger integers 

𝜇′ = 𝜇𝑛+2𝑖 =
𝑏2𝑛+2𝑖

𝑚
 

 

• The added random 𝑘 is bounded by 𝑘 < 𝑏𝑖 − 2 
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Efficiency 
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Example of application in a 
modular exponentiation 
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Resistance to side-channel 
attacks 

• Resistance to classical DSCA 

 

 

• Classical multiply-always vulnerable to Amiel et al. 2008 

attack 

 

 

• Left-to-right atomic algorithms seem particularly vulnerable to 

combined attacks (passive + active) by Amiel et al. 2007 
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Note on elliptic curve 
cryptography 

•  NIST curves using GM primes 

 

•  Brainpool curves or others randomly generated elliptic 

curves 

 

• Dynamic redundant arithmetic can hide the infinity point from 

SPA 

 

•  Protection against Goubin’s attack and even the recent 

combined attack on ECC of Fan et al. 2011 
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Conclusion 

• Our modular reduction propositions are  

─ parametrized,  

─ time constant, 

─ efficient 

 

• Dynamic randomization for a small overhead 

 

• Protection against DSCA and more refined attacks like Amiel 

et al. 2008 or recent combined attacks 
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Thank you for your attention ! 
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